Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology.

نویسندگان

  • Robert K McNamara
  • Jennifer J Vannest
  • Christina J Valentine
چکیده

Accumulating translational evidence suggests that the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) plays a role in the maturation and stability of cortical circuits that are impaired in different recurrent psychiatric disorders. Specifically, rodent and cell culture studies find that DHA preferentially accumulates in synaptic and growth cone membranes and promotes neurite outgrowth, dendritic spine stability, and synaptogenesis. Additional evidence suggests that DHA may play a role in microglia-mediated synaptic pruning, as well as myelin development and resilience. In non-human primates n-3 fatty acid insufficiency during perinatal development leads to widespread deficits in functional connectivity in adult frontal cortical networks compared to primates raised on DHA-fortified diet. Preterm delivery in non-human primates and humans is associated with early deficits in cortical DHA accrual. Human preterm birth is associated with long-standing deficits in myelin integrity and cortical circuit connectivity and increased risk for attention deficit/hyperactivity disorder (ADHD), mood, and psychotic disorders. In general, ADHD and mood and psychotic disorders initially emerge during rapid periods of cortical circuit maturation and are characterized by DHA deficits, myelin pathology, and impaired cortical circuit connectivity. Together these associations suggest that early and uncorrected deficits in fetal brain DHA accrual may represent a modifiable risk factor for cortical circuit maturation deficits in psychiatric disorders, and could therefore have significant implications for informing early intervention and prevention strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology.

The principle omega-3 fatty acid in brain, docosahexaenoic acid (DHA), accumulates in the brain during perinatal cortical expansion and maturation. Animal studies have demonstrated that reductions in perinatal brain DHA accrual are associated with deficits in neuronal arborization, multiple indices of synaptic pathology including deficits in serotonin and mesocorticolimbic dopamine neurotransmi...

متن کامل

P3: Food and Behavior: Long Chain Poly Unsaturated Fatty Acids and Anxiety

The anecdote "we are what we eat" in line with the doctrine of Hypocrates in 400 BC “Let food be thy medicine and medicine thy food” are vividly portray the importance of daily regimen in human health and body well-functioning. There is a growing body of evidence that suggests the relative intake of specific nutrients can have a profound effect on physiology of individuals...

متن کامل

P28: The Effects of Omega-3 and 6 Fatty Acids on Hippocampus and Learning

One of the most nervous system evolution are memory and learning in humans. Learning is a skill that enhances synaptic activity in the hippocampus of prefrontal cortex. In fact, basic passive learning is communication between the conditioned and Unconditioned stimulation. Passive learning involves three steps: habit, education and remember. According to the results of investigations, the hippoc...

متن کامل

I-7: Fatty Acids and Male Reproductive Function

Background Background: The fatty acid composition of the sperm membrane changes drastically during spermatogenesis and may be key to its function. Previous data has shown that intake of long chain poly-unsaturated fatty acids can change the fatty acid composition of tissues, including testes and sperm. However, whether these changes in composition translate into changes in semen quality or male...

متن کامل

Effect of Short and Long-Term Treatment with Omega-3 Fatty Acids on Scopolamine-Induced Amnesia

   Two omega-3 fatty acids including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are essential for the physiologic function of neuronal cell membrane. Normal function of neuronal cell membrane requires appropriate composition of fatty in its structure. Present study was designed to compare the effect of short-term and long-term pretreatment with omega-3 fatty acids on scopolamine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • World journal of psychiatry

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 2015